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Abstract--The existence and uniqueness of partition of the inertial coupling terms in the momentum and 
energy equations of a component in a mixture have been derived when disparate mass velocities and static 
temperatures exist. Evidences based on one dimensional analyses include reducing to the case of a dilute 
suspension, exhibiting consistently hyperbolic nature of both the mixture and the component equations, and 
giving real characteristics of the system equations. 

Further comments on the existence of the inertial coupling terms (Soo 1976) and the "unique- 
ness" of splitting will help clarify the formulation of a mixture in terms of components. A 
general discussion of the philosophical difference in the formulation of conservation equations 
for multiphase systems seems appropriate. Most of the formulation of the conservation 
equations for multiphase systems begins with a consideration of the individual phases (Baren- 
blatt 1953; Solbrig & Hughes 1975; lshii 1975; Harlow & Amsden 1975; Wallis 1969). The 
conservation equations for the mixture are deduced by combining those for the individual 
phases. This might be considered a natural approach which appears feasible in principle. In 
practice, however, it often leads to errors due to investigators' inability to include all relevant 
physical effects into the formulation. An example is the conspicuous absence of the inertial 
coupling forces in the momentum equation for the individual phases. This pitfall is recognized 
in the references (Soo 1976a; Sha & Soo 1977) and the view (Soo 1967) has been adopted that 
the formulation of the field equations should begin with the mixture. The basic reasoning for 
such a choice stems from the observation that all experimental evidence supports the use of 
Navier-Stokes equation for describing air motion despite the fact that air is a mixture of 
nitrogen and oxygen. Consequently, the authors believe that the global momentum and energy 
equation for the mixture of a multiphase system assume the same form as those for a 
homogeneous medium, when viewed within the context of continuum mechanics. The foregoing 
statement has been adopted by us as a fundamental postulate which we shall not abandon 
unless evidence of the contrary can be demonstrated. Rigorous derivation of basic equations 
was carried out (Sha & Soo 1977). 

To illustrate our viewpoint, and for simplicity, we present in the following derivation of the 
momentum and energy equation for a one-dimensional, two-phase system. The results can be 
readily generalized for three-dimensional, multiphase systems. Our line of reasoning leads to 
the inertial coupling force in the momentum equation for the individual phases. However, 
such a contribution, conspicuously, has not been correctly accounted for in all other 
published equations. It is interesting to note that the use of the momentum equation without the 
inertial coupling term gives rise to imaginary characteristics in transient flow (Lyczkowski et al. 
1975), while the equation of the mixture gives real characteristics. Experimental verifications of the 
latter are well known. 

Neglecting field forces and capillarity, the one-dimensional momentum equations for in- 
dividual phases are: 

dU~ dUl+ OUt_ aPI ~_I12+ VI2; [la] 
pi T f f  = p, ~ i -  p,u, ax a~ 
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dU,  OU2 + P2 ~ = P2 ~ -  p2U2 oU2 _ OP2 
I- 121 + V21. [ l b ]  

c)x Ox 

Where Or. P2 are the densities of species I and 2 in the mixture respectively; Ut. U2 are their 

respective velocities, and t is the time. x is the position coordinate; we use partial pressures Pt 

and P2 because [la] and [Ib] are applicable to continuum as well as multiphase mechanisms. 

The inertial interaction forces l~z and I2, are to include the contribution resulting from phase 

change. A consideration of the physical origin of the viscous interaction forces leads to the 

simple relation V~2 =-V2~ .  The evaluation of 112 and 12~ is made possible via the mixture 

momentum equation for which we write 

dU,,, oU,,, o~=p.,~T+o,.v,,, O U . . . .  OP 
Ox Ox [2] 

where the mixture density, mixture momentum and system pressure are defined as p,, = p, + P2 

and pmU,,, = Pt U, + p2U2 and P = Pt + P2 respectively. Thus, the mixture velocity, U,, is seen to 

be the mass center velocity. In [2] the viscosity of the mixture is purposely dropped since we 

wish to focus our attention to the nature of 1,2 and In ,  which are independent of the viscosities 

of the media. 
By making use of the continuity equations for the individual phases: 

ap~ + ap, U~ = F~. [3a] 
c?t Ox 

ap,. U~ 
@_2 + _ - = F2 [3b] 
at ax 

where F,, 1-' 2 a r e  rates of generation per unit volume and Ft + F2 = 0. and the continuity equation 

for the mixture: 

apm ~ OpmU . . . .  O. [41 
Ot Ox 

we find after a straightforward calculation that [2] can be written as 

Since 

~1 ~ axO f P,P2 (U2_UI)2]_ OPox. Pl +Ff fUi -U, , , )+p~_  : + F 2 ( U 2 - U " ) - Z - L p I + p 2  [51 

pip2 ( U i -  Uz)2=pf fUi  - U,,,)2+p2(U: U,,,) 2, [6] 
P! + P2 

it follows then from a comparison of [5] with the sum of [la] and [lb] that 

0 
1,2 = }-~x [p l IU i -  U, , )2] -F f fUt  - U,,,). 

0 
121 = ~ X  [ P 2 ( U 2  - U, , , ) : ]  F 2 ( U 2 -  Urn) .  

[7] 

[8] 

Note that the above l ' s  are redefined in the momentum flux form. 
From [7] and [8], one sees that the inertial coupling force originates from the difference in 

the velocity of individual phase and that of the mass center of the mixture. The inertial coupling 

force is the drag due to relative motion of particles in an ideal fluid (nonviscousl for the density 



ON INERTIAL COUPLING IN DYNAMIC EQUATIONS OF COMPONENTS IN A MIXTURE 221 

of a phase defined according to the multiphase mechanics (Soo 1976b). This term in the 
momentum equation also distinguishes a fixed particle in the system from a free particle at zero 
velocity. The existence of this force and its effect on the dynamics of the individual phase have 
not been recognized by other investigators. It was hinted by some investigators (Ishii 1975; 
Lyczkowski et al. 1975; Drew 1971), but not rigorously accounted for. As a matter of fact, it is 
unlikely that these inertial coupling terms could be overlooked, had one tried to derive the 
equation rigorously. If one denotes the viscous interaction force VI2 by pIFI2(U2- UI), where 
El2 is the inverse relaxation time, then the momentum equation for phase 1 becomes, 

dU, a - + pIFI2(U2- U,), [9] Pl dt, ax [p,(U,- U..)2]+FI(U, - U..)= a,b,Pax 

where ¢1 is the volume fraction of phase 1. Note that partial pressure P, in [la] and [lb] is only 
pertinent to a gaseous mixture, ~biP is identified here because each phase in a muitiphase 
mixture is under the pressure P. tb,oPlax is the force acting on phase 1 by the pressure gradient, 
while Parkl/OX represents a diffusive force; its modification for particular physical systems is given 
in Sha & Soo (1977). Equivalently, in flux form, it becomes 

ap~ U~ + apl Ul 2 a a4~lP + plFI2(U2- Ui). [10] at ax ax [pl(UI-  Um)2]-I'lUm = - ax 

The momentum equation for phase 2 can be obtained by an obvious modification of the 
subscripts. 

We now turn our attention to the energy equation. Denoting the sum of the internal and 
kinetic energy per unit mass by E, the energy equations for adiabatic flow of the mixture, in the 
absence of heat source and dissipation are (in terms of total enthalpy H, H = E + (Pip)). 

for the individual phases, and 

d i l l _  aPm 
- + L,2+ Q,2. [lla] Pl dtl at 

dH2_ OP2+ L2!  + Q21 [lib] 
P2 d t2  - O--T 

dH,. _ aP 
P" dtm at [12] 

for the mixture. In [11] LI2 and L21 denote the coupling of energy of phases associated with 
inertial effects, while QI2 and Qz~ denote heat transfer coupling. The mixture enthalpy Hm is 
defined by pmH,. = plHi + p2H2 and QI2 = -Q21. 

Following a procedure completely analogous to that used for the momentum equations, we 
find that [12] can be rewritten as 

P i d t  ' ~ [ p , + p 2 , , - , i - U 2 ) H ,  +r,H,+p2~-~2 ~-xLp-~-~(U2-U, )H2  + r 2 H 2 = - - -  

By comparing with [1 la] and [1 lb], we readily identify 

aP 
a t  

[131 

0 [ piP22 "U H2)]-FI(HI - -  
-- -- H 2 )  Pl + P2 

0 
= ~ [p,(U, - U,~)(H, - HI)] - FI(HI - Hi),  [141 
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and 

0 [ pl2p2 i t r  _ U O ( H , -  H 0 ]  - F2(H2- H , ) - -  
L21 = 0x [(Pl + P2) ~,2 

0 
= - ~  [p2(U2 - Um)(H2 - H,.)] - Fz(H2 - H,.). 

Pl 
Pl + P'z 

[15] 

As is the case of the inertial coupling force in the momentum equation for the individual 
phases, energy exchange associated with inertial effects, Li2 and L2~, has not been recognized 
by other investigators. 

In summary, the momentum and energy exchange between phases arising from their 
unequal velocities and associated with inertial effects can only be recognized through simulta- 
neous consideration of the corresponding conservation equation for the mixture and for the 
individual phases as demonstrated here. This, then, is the basic difference between our 
formulation and others. Arguments favoring our line of thinking have been given; additional 
supporting evidence will be cited. 

Experimental evidence is always the ultimate means for validating a formulation or 
resolving a controversy. In the present case, a proof of [2] is by weighing a bucket of water in 
which sand is settling and note that the total weight does not change. Additional evidences 
favoring the inclusion of inertial coupling terms in the above forms are: 

(a) Uniqueness o f  inertial coupling terms. The desirability of such a split is evidenced by 
the fact that, for a dilute suspension of particle phase 1 in continuous phase 2, p2 "> pl and, in, 
the limit, the presence of 1 does not affect the motion of 2. The momentum equation then gives 

dUl 0 OPdpl q_pifl2(U2 - UI) .~.FI(U2_ UI), pl dh 0x [pI(U2- UI)2] "~ - 0x [16a] 

dU2 = OP(I - ¢,bl) p1FI2(U2-  UO [16b] 
P2 dh Ox 

as expected, where the last term has negligible contribution to the second equation. El2 is the 
inverse relaxation time constant for momentum transfer and F1 is the mass generation rate per 
unit volume. 

Similar consideration is applicable to the energy equation; the case p~-> Pl 

dH~ _ OPcbl + 0 
PJ dh  - - - ~  - ~  [pl(U2 - UO(HE - H0] + FI(H2 - H0 + Ql2, 

dH2 bP(1 - ~b,) 
p2 dt2 = 0t - QI2 

[17a] 

[17b] 

that is the thermal state of 2 is not affected by the presence of 1 when Q~2 is small compared to 
other terms in the second equation. 

(b) Transient ]low. The Newton's law is applicable to the mixture with disparate motion of 
phases and gives real characteristics. With the above split, the equations of the phases also gives 
real characteristics as they should. In as much as we could write in terms of the components of air 
and expect the unsteady motion to give real characteristics, this point was demonstrated as an 
example in Soo (1976b). The example is, of course, not the limit of the scope of the present study. 
The wave phenomenon in this case arises from t~t4h + ~2(1 - ~bl) with 4~t as a variable, and pt, t~ are 
the densities of materials constituting the species or phases. 

It was shown (Soo 1976b) rigorously that without the inertial coupling effect properly 
accounted for, momentum equations of components give imaginary characteristics when the 
momentum equation of this mixture gives real characteristics. Such a result is contradictory to 
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the experimental evidence which have been observed in the case of air. When the flow 
phenomenon is such that the mixture has real characteristics, no physical reasons are available 
for the equations for oxygen and nitrogen to have imaginary characteristics. 

(c) Stability of computation of transient flow. Worth mentioning is that the stability of 
computation of transient flow is significantly improved when the inertial coupling terms are 
properly accounted for. This was found independently by Krier & Gonkale (1976) and 
Lyczkowski et al. (1975). The reason is that similar stability to that of the mixture momentum 
equation is retained via the inertial coupling terms. It is further noted that both the terms due to 
virtual mass and unsteady motion do not always stabilize the computation (Soo 1976b). 
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